A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan

نویسنده

  • Chin-San Wu
چکیده

The effects of replacing PCL with acrylic acid grafted PCL (PCL-g-AA) on the structure and properties of a PCL/chitosan composite were investigated. The properties of both PCL-g-AA/chitosan and PCL/chitosan were examined and compared using FTIR, H and C nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and a biodegradation test. With PCL-g-AA in the composite, compatibility with chitosan and, consequently, the properties of the blend were both much improved due to the formation of ester and imide groups that conferred better dispersion and homogeneity of chitosan in the matrix. Moreover, PCL-g-AA/chitosan had a lower melt temperature and was, therefore, more easily processed than PCL/chitosan. Resistance to water was higher in the PCL-g-AA/chitosan blend, and consequently so was its resistance to biodegradation in soil and in an enzymatic environment. Nevertheless, weight loss of blends buried in soil or exposed to an enzymatic environment indicates that both blends were biodegradable, especially at high levels of chitosan content. Both blends suffered deterioration in tensile strength and elongation at break after exposure to soil or enzymatic environments. q 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Adipose Mesenchymal Stem Cells Proliferation by Carboxymethyl-Chitosan Functionalized Polycaprolactone Nanofiber

Background: Through combining two synthetic and natural polymers, scaffolds can be developed for tissue engineering and regenerative medicine purposes. Methods: In this work, carboxymethyl chitosan (CMC; 20%) was grafted to Polycaprolactone (PCL) nanofibers using the cold atmospheric plasma of helium. The PCL scaffolds were exposed to CAP, and functional groups were developed on the PCL surface...

متن کامل

Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior

Objective(s): Fabrication of scaffolds with improved mechanical properties and favorable cellular compatibility is crucial for many tissue engineering applications. This study was aimed to improve mechanical and biological properties of polycaprolactone (PCL), which is a common biocompatible and biodegradable synthetic polymer in tissue engineering. Nanofibrillated chitosan (NC) was used as a n...

متن کامل

Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...

متن کامل

Synthesis and Characterization of Fe3O4 Magnetic Nanoparticles Coated with Carboxymethyl Chitosan Grafted Sodium Methacrylate

N-sodium acrylate-O-carboxymethyl chitosan [CMCH-g-PAA(Na)] bound Fe3O4 nanoparticles were developed as a novel magnetic nanoparticles with an ionic structure that can be potentially used in many fields. CMCH-g-PAA (Na) was obtained by grafting of sodium polyacrylate on O-carboxymethyl chitosan, which is an amphiphilic polyelectrolyte with the biocompatibility and biodegra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004